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Abstract- Most of the itemset mining approaches are 
memory-like and run outside of the database. On the other 
hand, when we deal with data warehouse the size of tables is 
extremely huge for memory copy.  In addition, using a pure 
SQL-like approach is quite inefficient. Actually, those 
implementations rarely take advantages of database 
programming. Furthermore, RDBMS vendors offer a lot of 
features for taking control and management of the data. We 
purpose a pattern growth mining approach by means of 
database programming for finding all frequent itemsets. The 
main idea is to avoid one-at-a-time record retrieval from the 
database, saving both the copying and process context 
switching, expensive joins, and table reconstruction. The 
empirical evaluation of our approach shows that runs 
competitively with the most known itemset mining 
implementations based on SQL. Our performance evaluation 
was made with SQL Server 2000 (v.8) and T-SQL, 
throughout several synthetical datasets. 

Index Terms-  SQL, RDBMS, Mining, Itemset, OLAP 

 
I. INTRODUCTION 

The problem of finding all frequent itemsets [2] given a 
Dataset D with a minimum support threshold S is the most 
time consuming task on association rule mining. In order 
to solve this problem, two ways are likely to be chosen: 
one using algorithms that employed sophisticated in 
memory data structures, where the data is stored into and 
retrieved from flat files; and another using algorithms that 
are based on SQL statements and extensions to query and 
update a database. The former is very efficient when it is 
compared with the later. On the other hand, when we deal 
with data warehouse the size of tables is extremely huge 
for memory copy. Nevertheless, it becomes important for 
Relational Database Management Systems (RDBMS) to 
offer new analytic functionalities to support business 
intelligence applications. 
There are a few implementations based on SQL [12, 13, 
14, 15, 16], but they have performance issues 
concentrated in two central points: candidate-set 
generation and test (Apriori-bottleneck); and table 
reconstruction of conditional pattern trees (FP- Growth-
bottleneck). 
In this work we do not intend to compare the effectiveness 
of itemset mining based on database 
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programming with the memory ones. Instead, we purpose 
a solution for bringing the itemset mining process to the 
RDBMS server side, which generates the following 
contributions: 

1. A procedural schema for itemset mining, so the 
process can be run as a batch script on the RDBMS 
server side. 

2. A  cascading  approach  working  with  single  tables,  
and  also  avoiding  the complexity of mining frequent 
itemsets from several multi-tables joins. 

3. A  pattern growth mining which doesn’t surfer of 
several tables reconstruction (of conditional pattern 
trees) 

 
II. FREQUENT PATTERN MINING 

The frequent pattern mining problem can be defined as 
follow: Given a set of items I, a transaction database D over 
I, and a minimal support threshold S, find all itemsets 
F(D,S). Indeed, we are not only interested in the set of 
itemsets (F), but also in the actual supports of these 
itemsets. 
The most known implementation of frequent pattern 
mining algorithm is Apriori [3].  Several A p r i o r i -
based algorithms   have been purposed for getting better 
performance and I/O costs [9, 10, 11]. Recently, an FP-
tree based frequent pattern mining method, called FP-
growth, developed by Han et al.  [8], achieved high 
efficiency, when compared with the Apriori-like 
approaches.  Basically, the  FP-growth  method  adopts  
the  divide-and- conquer strategy. It uses only two full I/O 
scans of the database, and avoids iterative candidate 
generat ion.  In general terms, the mining process 
consists of making available the FP-tree data structure, 
and then FP-growth is applied over a FP-tree for getting 
frequent itemsets. 
There are implementations that suggest enhancements 
into the frequent pattern mining in order to make the 
process interactive, constrained, and incremental [6, 7]. 
Those aspects will not be discussed in this work. Instead, 
we focus on the first issue, i.e., finding frequent itemsets 
closer to RDBMS. The above implementations cannot be 
applied directly on the main problem of this work, since 
they need to copy tables out from the database for 
proper execution. Besides, after its execution, the results 
must be load again to the database for getting suitable 
analysis. 

A. Pattern Growth Mining 

Pattern Growth Mining can be viewed as first mining 
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frequent 1-itemset and then progressively growing each 
such itemset by mining its conditional pattern base, which 
\implies first mining its frequent 1-itemset and then 
progressively growing each such itemset by mining its 
conditional pattern base, etc [8]. Thus, a frequent k-
itemset mining problem can be transformed into a 
sequence of k frequent 1-itemset mining problems via a 
set of conditional pattern bases. The main aspects of the 
algorithm can be summarized as follows: 
1. For each node in the FP-tree construct its conditional 

pattern base, which is a "sub-database" constructed 
with the prefix sub-path set co-occurring with the suffix 
pattern in the FP-tree. FP-growth traverses nodes in the 
FP-tree from the least frequent item in I. 

2. From   each   conditional   pattern   base   construct   its    
     conditional FP-tree. 
3. Finally, if  the  conditional  FP-tree  has  a single path,   
    simply  enumerate  all  patterns,  on  the  contrary  run    
     pattern growth mining recursively over the conditional   
     FP-tree. 
 
B. SQL Based 

There  are  a  few  SQL-based  implementations  that  can  
be  used  to  mine  frequent patterns over large transactional 
tables [1, 12, 13, 15, 16]. Even so, all of them are based on 
nature of Apriori-like approach. There is another approach 
that uses FP- Growth [14] in RDBMS. Nevertheless, the 
process of reconstructing conditional FP tables for large 
datasets may pose performance issues. Therefore, we must 
avoid the previous mentioned bottlenecks: candidate set 
generation and test; and table reconstruction. Moreover, we 
have designed a procedural schema for mining all patterns 
on the RDBMS server side.  
We examined those assumptions, and purpose a new 
approach for pattern growth mining using database 
programming facilities. By using a pattern growth 
approach we are able to manage the first bottleneck. 
However, the current SQL implementation of FP-
Growth [14] cannot handle the second issue. 
Consequently, we need to provide a solution for pattern 
growth mining which must have the ability to: work in 
RDBMS server side, prevent multi-table joins and table 
reconstruction of conditional pattern trees. 
 

III. DISCOVERING FREQUENT ITEMSETS ON 
LARGE TRANSACTIONAL TABLES 

In order to provide itemset mining over large 
transactional tables on the RDBMS server side, we 
present a procedural schema by means of using several 
database facilities such as stored procedures, SQL-cursors, 
and UDF functions. We also call this approach as a 
Pattern Growth mining with SQL-Extensions (PGS). The 
whole procedural schema cannot, for reasons of space, be 
presented here, but can be found in [4]. 
The whole process can be summarized into two main steps: 
one for generating the pattern tree and another one for 
mining all patterns. 
Table1 shows the frequent 1-itemsets extracted from a 
transactional table (columns TID and Items). A new 
transactional table (column Freq. 1-itemsets) containing 
only records with frequent 1-itemsets is created, and thus 

its related pattern tree is also built. Finally, Table 2 
presents the pattern growth method applied over the 
pattern tree. For instance, giving that only items (column 
Item) are frequents, from its pattern tree, we work with only 
a subset (column SUBFP) for reaching its conditional 
pattern tree (column CONFP) and then enumerating all 
frequent patterns. 
 

Table 1: A transaction database with a support= 3. 
 

 

TID Items Freq. 1-itemsets 

1 1, 3, 5, 6, 7 3, 5, 7, 1, 6 
2 2, 3, 5, 6, 7 3, 5, 7, 6 

3 1, 2, 3, 4, 5 3, 5, 1

4 3, 6, 7 3, 7, 6

5 1, 4, 5, 7 5, 7, 1

 
 
Table 2. Extracting all patterns (R=root). 

 
Item               SUBFP CONFP PATTERNS 

3 Null Null Null 
5 R=1, R:3=3 3:3 3%5:3 
7 R:3=1, R:3:5=2, R:5=1 3:3, 5:3 3%7:3, 5%7:3 
1 R:3:5=1, R:3:5:7=1, R:5:7=1 5:3 5%1:3 
6 R:3:5:7=1, R:3:5:7:1=1, 

R:3:7=1 
3:3,7:3 3%6:3, 7%6:3,

3%7%6:3 
 
 
A.   Step 1: Creating pattern-tree Table 
 
Several tables are manipulating during the process of 
generating all itemsets (see Fig.1 and Fig 2). They are 
built just one time. In the recursive part, where pattern 
growth is applied, other structures are required, but they 
are created dynamically by using UDF functions and 
database cursors. In fact, they provide SUBFP (sub-path) 
tables for extracting single and not-single patterns. 
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Fig. 1: An overall picture of the tables involved in the    
            process of generating all itemsets 
 

 

 
 

Fig. 2: PGS database table schema 
 
We mean single patterns for those which are enumerated 
directly from its conditional FP table (CONFP) (for 
instance “3%5”1), meaning a co-occurrence of item 3 with 
item 5, without handling sub-path tables. A pattern such as 
“3%7%6” is extracted by combine those items that co-
occurs added with it is respective sub-path tables [8]. 

As a pattern growth approach the first step requires a 
pattern-tree structure also called FP-tree. Even though FP-
tree is a compact structure, it is unlikely to build such 
structure in memory for large databases. Consequently, 
using RDBMS capabilities like buffer management, query 
processor or SQL-Extensions, it is possible to take 
advantage of those mechanisms avoiding size 
considerations of data, in this particular case, FP (pattern-
tree) tables. 
The construction of FP table is set up on the following 
steps: 
(a) Based on a given support threshold (s), frequent 1-  
     itemsets are selected from the transactional table  
     TRANS. 
(b) A new transaction table TRANSFI is created based on 

transactions which contains those frequent 1-itemsets. 
(c) From the TRANSFI table, an EFP table which stands 

for Extended FP is built as a preprocessing step for 
reaching an FP table. 

(d) Finally, the FP table is created by means of an 
SQL expression, with proper aggregate function over 
EFP table. 

The EFP table is an interesting approach for getting FP 
table, since it avoids for each frequent item to be tested if it 
should be or not inserted into FP table [14]. 
 

 
# a piece of the Pattern TREE (FP) source code # 
PROCEDURE EFP 
DO with (EXISTS TRANSFI) 
CREATE TABLE EFP (item, cnt, path) 
CREATE TABLE FP (item, cnt, path) 
 DECLARE 

BEGIN 
 count=1 
 curpath = null 

c_transfi CURSOR for TRANSFI  
    FOR each row    in c_transfi BEGIN 
 curpath = curpath + ‘:’ + c_transfi.item 
 INSERT INTO EFP 

values(c_transfi.item, count, curpath) 
END 
SELECT item, sum(cnt) as cnt, path 
INTO FP 
FROM EFP 
GROUP BY item, path 

END 
 
B.   Step 2: Mining pattern-tree Table 

For mining FP table it is necessary to build two more 
auxiliary tables which are the pattern base (PB) and 
conditional FP table (CONFP). We present an approach 
where CONFP table is built based on simple SQL with 
proper aggregate functions over PB table. On the other 
hand, SQL-based FP-Growth [14] demands several 
reconstruction processes for those tables. It is almost 
unrealistic to create those tables several times. Therefore, 
we use an approach for getting sub-paths by means of 
UDF functions and database  cursors  with  its  respective  
support  threshold  over  the  SUBFP  table  (a SUBset of 
FP table). 
SUBFP is a table that contains only rows from FP 
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table which have itemsets enclosed in CONFP. By 
doing so, we can reduce the search space for getting 
sub-paths directly from all items in FP table, and also, 
avoid several reconstruction of PB, FP and CONFP 
tables. The size of FP is reduced significantly by using 
SUBFP mainly when dealing with low support thresholds 
on large datasets. The following steps are required for 
mining pattern tree table [4]: 
( a ) Taking as input the same support threshold defined in   
      3.1, creates the related tables PB, CONFP and SUBFP.  
(b) Update the column (pos) in CONF which keeps the    
     position of each item. This is useful for getting sub-path    
     databases in such way that it preserves the order of the   
     items on SUBFP table. This is important for using UDF 

(table-valued functions). 
(c) Extract single patterns by enumerating the prefix-   
     item stored on CONFP table.This also creates the   
    PATTERNS table. 
(d) Extract not-single patterns by applying pattern growth   
     over CONFP. 
(e) In Fragment Growth step, each prefix-item is 

extracted from SUBFP table and verified b y t wo 
UDF fu nc t i ons .  One for  generat i n g t h e sub -
path da t abases  (function getTable_pb) and other for 
getting the node support associated to each prefix-
item sub-path (function getNodeSupp). Those functions 
coupled with the SUBFP table play an important role 
for extracting all frequent patterns, and also avoid the 
re-construction of PB, FP and CONFP table for each 
prefix-item sub- path. 

# a piece of the Fragment Growth source code  # 
DECLARE pg_subPath CURSOR for 

     SELECT * FROM getTable_pb(@v_prefix,@v_item)   
     order by ord  

 SELECT list_pg_item  = pg_subPath.item 
              FOR each row in pg_subPath 
BEGIN 
SELECT node_path = pg_subPath.item+’%’+   

     c_confp.item 
SELECT  node_supp= 

getNodeSupp(pg_subPath.prefix, node_path) 
SELECT pat_item = pg_subPath.item 
SELECT pat_fp = node_path+'%'+     

                               pg_subPath.prefix 
SELECT pat_cnt =  node_supp 
SELECT exist_pat = (                                           
SELECT count(*)  FROM    
                                      PATERNS 
WHERE item=pat_item and fp=pat_fp) 
 INSERT INTO PATTERNS (item,fp,cnt)  
           VALUES (pat_item, pat_fp, pat_cnt) 
 SELECT list_pg_item = list_pg_item 

+’%’+ pg_subPath.item 
END 
 
UDF FUNCTION getNodeSupp   (@item, @path) 
RETURNS @node_supp ## ->   node support  
BEGIN 
DECLARE @supp int 
SELECT @supp = (SELECT sum(cnt)FROM   SUB_FP 

WHERE item=@item and 
path LIKE  '%' +@path+'%') 

RETURN (@supp) 
UDF FUNCTION getTable_pb (@prefix, @item) 
RETURNS TABLE ## -> sub-path databases 

AS   RETURN 
SELECT prefix,item,cnt,ord  FROM   CONFP 
WHERE  prefix=@prefix and 

item<>@item ##-> criteria for sub-path mining 
 

IV.  PGS EVALUATION ON RDBMS  
SERVER SIDE 

In order to evaluate PGS we compare our results with an 
Apriori (K-way join) and improved SQL-based FP-growth 
(EFP). Those algorithms were chosen in sense that they 
present the basis on the most known itemset mining 
implementations based on SQL [1, 12, 13, 14, 15, 16]. Both 
algorithms were implemented to the best of our knowledge 
based on the published reports on the same machine and 
compared in the same running environment. The former 
implementation uses a candidate k-table Ck, which is a 
slow process for generating all joins and tables. So, when 
dealing with long patterns and large datasets the K-way 
join seems to be not efficient. The EFP avoids candidate-set 
generation been more competitive in low support scenario. 
However, it demands several tables reconstruction. 
Our approach takes the other way around, beyond pure 
SQL to SQL-Extensions. Also getting sub-paths databases, 
and restricting the search space for finding frequent 
itemsets  by  means  of  using  an  SUBFP  table  
coupled  with  UDF  functions. Consequently, we don’t 
need to materialize PB, FP and CONFP tables several 
times. PGS also has been used in [5] for the extraction and 
analysis of inter-transactional patterns. The method consists 
in the combination of association and sequence mining. 

A. Datasets 

We use the synthetic transaction data generation described 
in [3] for generating transactional tables. The nomenclature 
of these data sets is of the form TxxIyyDzzzK. Where xx 
denotes the average number of items present per 
transaction, yy denotes the average support of each item in 
the data set, and zzzK the total number of transactions in K 
(1000’s). Table 3 summarizes those datasets. 
 
 

Datasets Dist. 
Items 

Nof. 
 Rows 

Avg.1-it. 
sup 

Max.1-it. 
sup 

T5I51K (1) 775 5.112 6 41 
T5I5D10K (2) 873 49.257 56 399 

T25I10D10K (3) 947 245.933 259 1468 
T25I20D100K (4) 981 2.478,55 2526 13.917 
 
Table 3: More information of the transactional datasets 
 
B. Comparative Study 

We describe our approach PGS, comparing it with K-Way-
join and EFP. Our experiments were performed with 
Microsoft SQL Server 2000 (v.8.0). The machine was a 
mobile AMD Athlon ™ 2000+ 645MHZ, 224 MB RAM. 
The performance measure was the execution time ‘the 
logarithm of the execution time (log (milliseconds))’ of the 
algorithm applied over the four datasets with different 
support thresholds. We took that log scale in order to get a 
better view of the performance comparison among all 
approaches, since PGS has good response time. Fig. 3 
shows the total time taken by the all approaches. 
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From  those  graphs  we  can  make  the  following  
observation:  PGS  can  get competitive performance out of 
FP and K-way-join. K-way-join has low performance when 
dealing with large datasets. Besides, when the support 
decrease the length of frequent itemsets increase causing 
expensive joins with the transactional tables. Therefore, the 
other two approaches perform better than K-way-join. 
The results of PGS and EFP answered our second issue. 
The former doesn’t use table reconstruction, getting good 
response time. On the other hand, the latter suffers 
considerably by working with several table materialization 
processes. By those results we have accomplished our main 
goals. 
The store procedures which deal with the construction of 
tables FP and CONFP are the most time-consuming 
tasks. They respectively took, for each dataset, 35%, 
50%, 75% and 85% of the total execution time. 
Nevertheless, the time for the whole process was quite 
competitive and those tables are built only once. In order 
to speed up even more the whole process, we also have 
been applied two clustered indexes on tables CONFP and 
SUBFP. 
 

 
Fig. 3: Time performance of the three   
    approaches. PGS runs competitively in sparse 
and dense datasets 
 
C. Food Mart Warehouse 

FoodMart Warehouse is a sample database provided by 
Microsoft SQL Server 2000. One can use Analysis Services 
for applying OLAP and Data Mining techniques over data 
warehouses. However, only Clustering and Decision Tree 
methods are available. In order to support itemset mining 
over FoodMart database we may use PGS. It works  only  
in  first  step  of  association  rules,  which  means  

generating  frequent itemsets.  For  getting  all  the  rules,  
one  can  program a  store  procedure  using  the pseudo-
code in [2]. We choose this last example for presenting 
some results with a “real” database. Although we know that 
its size is smaller than the largest one showed in section 
4.2, we also can reach interesting itemsets.  Therefore we 
omit the performance comparison among all approaches. It 
was used the fact table (sales_fact) as the transactional 
table. This table has 164.558 tuples with five dimensions 
(product, time, customer, promotion and store). Before 
using PGS, we must define which dimensions in the fact 
table will be used as the transaction identifier (tid) and the 
set of items. Thus, the tid was set to the customer dimension 
and items to the product dimension. Furthermore, there are 
1.559 distinct products distributed along 7.824 customers. 
The most frequent product was 277  “Great  English  
Muffins”  (143)  and  the  less  one  was  1559  “CDR  
Apple Preserves” (43). It was executed several supports 
from (0.05%) to (0.01%). The most interesting itemset was 
“282%232” means “Best Choice Salsa Dip” and “Great 
Wheat Bread” in low level hierarchy. Given that the fact 
table was so sparse, the itemsets was selected only with 
very low support. 
 

V. CONCLUSION 

In this paper, it was purposed a pattern growth mining 
implementation which takes advantage of SQL-Extensions. 
Most of the commercial RDBMS vendors have 
implemented some features for SQL-Extensions. 
Integrating data mining in RDBMS is a quite promising 
area. Frequent pattern mining is the basic task in data 
mining. There are several memory-approaches  to  mine  all  
patterns.  However, some few efforts have been made on 
database perspective, in those cases, only pure-SQL. Given 
the large size of database like data warehouse, it is 
interesting to take advantage of those databases capabilities 
in order to manage and analyze large tables. We work in 
this direction purposing an approach with SQL-Extensions. 
By doing so, we can achieve competitive results and also 
avoid classical bottlenecks: candidate set generation and 
test (several expensive joins), and table reconstruction. The 
Store Procedures that deals with the construction of the 
tables, FP and CONFP, are the most time-consuming  tasks,  
taking  35%,  50%,  75%  and  85%  respectively  for  each 
synthetic dataset (1, 2, 3, 4) from the small one to the 
large one. Nevertheless, the time for the whole process was 
quite competitive.  Moreover, it was sed the FoodMart 
Warehouse with several supports in order to find interesting 
itemsets. One issue that is controversial is code portability, 
in sense that PGS is tightly dependent of the database 
programming language with SQL-Extensions. On the other 
hand for huge databases, it makes more sense take all the 
advantages offered by the RDBMS. 
As future work, we are working on enhancements for 
making the process more interactive, constrained and 
incremental.  We also intend to improve the whole 
performance of PGS by using Table Variables (TV), 
which allows mimicking an array, instead of using 
database cursors. 
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