
 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347- 5552, Volume-1, Issue-1, September- 2013

6

Itemset Mining over Large Transactional
Tables on the Relational Databases

Arun Pratap Srivastava, Prof.(Dr) Mohd. Hussain

Abstract- Most of the itemset mining approaches are
memory-like and run outside of the database. On the other
hand, when we deal with data warehouse the size of tables is
extremely huge for memory copy. In addition, using a pure
SQL-like approach is quite inefficient. Actually, those
implementations rarely take advantages of database
programming. Furthermore, RDBMS vendors offer a lot of
features for taking control and management of the data. We
purpose a pattern growth mining approach by means of
database programming for finding all frequent itemsets. The
main idea is to avoid one-at-a-time record retrieval from the
database, saving both the copying and process context
switching, expensive joins, and table reconstruction. The
empirical evaluation of our approach shows that runs
competitively with the most known itemset mining
implementations based on SQL. Our performance evaluation
was made with SQL Server 2000 (v.8) and T-SQL,
throughout several synthetical datasets.

Index Terms- SQL, RDBMS, Mining, Itemset, OLAP

I. INTRODUCTION

The problem of finding all frequent itemsets [2] given a
Dataset D with a minimum support threshold S is the most
time consuming task on association rule mining. In order
to solve this problem, two ways are likely to be chosen:
one using algorithms that employed sophisticated in
memory data structures, where the data is stored into and
retrieved from flat files; and another using algorithms that
are based on SQL statements and extensions to query and
update a database. The former is very efficient when it is
compared with the later. On the other hand, when we deal
with data warehouse the size of tables is extremely huge
for memory copy. Nevertheless, it becomes important for
Relational Database Management Systems (RDBMS) to
offer new analytic functionalities to support business
intelligence applications.
There are a few implementations based on SQL [12, 13,
14, 15, 16], but they have performance issues
concentrated in two central points: candidate-set
generation and test (Apriori-bottleneck); and table
reconstruction of conditional pattern trees (FP- Growth-
bottleneck).
In this work we do not intend to compare the effectiveness
of itemset mining based on database

Manuscript received September 10, 2013.
Arun Pratap Srivastava, Ph.D. Student, NIMS University, Jaipur,
 India, (e-mail: arun019@yahoo.com).
Prof.(Dr). Mohammad Husain, Director, MG Institute of Management
& Technology, Lucknow, India, (e-mail: mohd.husain90@gmail.com).

programming with the memory ones. Instead, we purpose
a solution for bringing the itemset mining process to the
RDBMS server side, which generates the following
contributions:

1. A procedural schema for itemset mining, so the
process can be run as a batch script on the RDBMS
server side.

2. A cascading approach working with single tables,
and also avoiding the complexity of mining frequent
itemsets from several multi-tables joins.

3. A pattern growth mining which doesn’t surfer of
several tables reconstruction (of conditional pattern
trees)

II. FREQUENT PATTERN MINING

The frequent pattern mining problem can be defined as
follow: Given a set of items I, a transaction database D over
I, and a minimal support threshold S, find all itemsets
F(D,S). Indeed, we are not only interested in the set of
itemsets (F), but also in the actual supports of these
itemsets.
The most known implementation of frequent pattern
mining algorithm is Apriori [3]. Several A p r i o r i -
based algorithms have been purposed for getting better
performance and I/O costs [9, 10, 11]. Recently, an FP-
tree based frequent pattern mining method, called FP-
growth, developed by Han et al. [8], achieved high
efficiency, when compared with the Apriori-like
approaches. Basically, the FP-growth method adopts
the divide-and- conquer strategy. It uses only two full I/O
scans of the database, and avoids iterative candidate
generat ion. In general terms, the mining process
consists of making available the FP-tree data structure,
and then FP-growth is applied over a FP-tree for getting
frequent itemsets.
There are implementations that suggest enhancements
into the frequent pattern mining in order to make the
process interactive, constrained, and incremental [6, 7].
Those aspects will not be discussed in this work. Instead,
we focus on the first issue, i.e., finding frequent itemsets
closer to RDBMS. The above implementations cannot be
applied directly on the main problem of this work, since
they need to copy tables out from the database for
proper execution. Besides, after its execution, the results
must be load again to the database for getting suitable
analysis.

A. Pattern Growth Mining

Pattern Growth Mining can be viewed as first mining

Itemset Mining over Large Transactional Tables on the Relational Databases

7

frequent 1-itemset and then progressively growing each
such itemset by mining its conditional pattern base, which
\implies first mining its frequent 1-itemset and then
progressively growing each such itemset by mining its
conditional pattern base, etc [8]. Thus, a frequent k-
itemset mining problem can be transformed into a
sequence of k frequent 1-itemset mining problems via a
set of conditional pattern bases. The main aspects of the
algorithm can be summarized as follows:
1. For each node in the FP-tree construct its conditional

pattern base, which is a "sub-database" constructed
with the prefix sub-path set co-occurring with the suffix
pattern in the FP-tree. FP-growth traverses nodes in the
FP-tree from the least frequent item in I.

2. From each conditional pattern base construct its
 conditional FP-tree.
3. Finally, if the conditional FP-tree has a single path,
 simply enumerate all patterns, on the contrary run
 pattern growth mining recursively over the conditional
 FP-tree.

B. SQL Based

There are a few SQL-based implementations that can
be used to mine frequent patterns over large transactional
tables [1, 12, 13, 15, 16]. Even so, all of them are based on
nature of Apriori-like approach. There is another approach
that uses FP- Growth [14] in RDBMS. Nevertheless, the
process of reconstructing conditional FP tables for large
datasets may pose performance issues. Therefore, we must
avoid the previous mentioned bottlenecks: candidate set
generation and test; and table reconstruction. Moreover, we
have designed a procedural schema for mining all patterns
on the RDBMS server side.
We examined those assumptions, and purpose a new
approach for pattern growth mining using database
programming facilities. By using a pattern growth
approach we are able to manage the first bottleneck.
However, the current SQL implementation of FP-
Growth [14] cannot handle the second issue.
Consequently, we need to provide a solution for pattern
growth mining which must have the ability to: work in
RDBMS server side, prevent multi-table joins and table
reconstruction of conditional pattern trees.

III. DISCOVERING FREQUENT ITEMSETS ON
LARGE TRANSACTIONAL TABLES

In order to provide itemset mining over large
transactional tables on the RDBMS server side, we
present a procedural schema by means of using several
database facilities such as stored procedures, SQL-cursors,
and UDF functions. We also call this approach as a
Pattern Growth mining with SQL-Extensions (PGS). The
whole procedural schema cannot, for reasons of space, be
presented here, but can be found in [4].
The whole process can be summarized into two main steps:
one for generating the pattern tree and another one for
mining all patterns.
Table1 shows the frequent 1-itemsets extracted from a
transactional table (columns TID and Items). A new
transactional table (column Freq. 1-itemsets) containing
only records with frequent 1-itemsets is created, and thus

its related pattern tree is also built. Finally, Table 2
presents the pattern growth method applied over the
pattern tree. For instance, giving that only items (column
Item) are frequents, from its pattern tree, we work with only
a subset (column SUBFP) for reaching its conditional
pattern tree (column CONFP) and then enumerating all
frequent patterns.

Table 1: A transaction database with a support= 3.

TID Items Freq. 1-itemsets

1 1, 3, 5, 6, 7 3, 5, 7, 1, 6
2 2, 3, 5, 6, 7 3, 5, 7, 6

3 1, 2, 3, 4, 5 3, 5, 1

4 3, 6, 7 3, 7, 6

5 1, 4, 5, 7 5, 7, 1

Table 2. Extracting all patterns (R=root).

Item SUBFP CONFP PATTERNS

3 Null Null Null
5 R=1, R:3=3 3:3 3%5:3
7 R:3=1, R:3:5=2, R:5=1 3:3, 5:3 3%7:3, 5%7:3
1 R:3:5=1, R:3:5:7=1, R:5:7=1 5:3 5%1:3
6 R:3:5:7=1, R:3:5:7:1=1,

R:3:7=1
3:3,7:3 3%6:3, 7%6:3,

3%7%6:3

A. Step 1: Creating pattern-tree Table

Several tables are manipulating during the process of
generating all itemsets (see Fig.1 and Fig 2). They are
built just one time. In the recursive part, where pattern
growth is applied, other structures are required, but they
are created dynamically by using UDF functions and
database cursors. In fact, they provide SUBFP (sub-path)
tables for extracting single and not-single patterns.

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347- 5552, Volume-1, Issue-1, September- 2013

8

Fig. 1: An overall picture of the tables involved in the
 process of generating all itemsets

Fig. 2: PGS database table schema

We mean single patterns for those which are enumerated
directly from its conditional FP table (CONFP) (for
instance “3%5”1), meaning a co-occurrence of item 3 with
item 5, without handling sub-path tables. A pattern such as
“3%7%6” is extracted by combine those items that co-
occurs added with it is respective sub-path tables [8].

As a pattern growth approach the first step requires a
pattern-tree structure also called FP-tree. Even though FP-
tree is a compact structure, it is unlikely to build such
structure in memory for large databases. Consequently,
using RDBMS capabilities like buffer management, query
processor or SQL-Extensions, it is possible to take
advantage of those mechanisms avoiding size
considerations of data, in this particular case, FP (pattern-
tree) tables.
The construction of FP table is set up on the following
steps:
(a) Based on a given support threshold (s), frequent 1-
 itemsets are selected from the transactional table
 TRANS.
(b) A new transaction table TRANSFI is created based on

transactions which contains those frequent 1-itemsets.
(c) From the TRANSFI table, an EFP table which stands

for Extended FP is built as a preprocessing step for
reaching an FP table.

(d) Finally, the FP table is created by means of an
SQL expression, with proper aggregate function over
EFP table.

The EFP table is an interesting approach for getting FP
table, since it avoids for each frequent item to be tested if it
should be or not inserted into FP table [14].

a piece of the Pattern TREE (FP) source code #
PROCEDURE EFP
DO with (EXISTS TRANSFI)
CREATE TABLE EFP (item, cnt, path)
CREATE TABLE FP (item, cnt, path)
 DECLARE

BEGIN
 count=1
 curpath = null

c_transfi CURSOR for TRANSFI
 FOR each row in c_transfi BEGIN
 curpath = curpath + ‘:’ + c_transfi.item
 INSERT INTO EFP

values(c_transfi.item, count, curpath)
END
SELECT item, sum(cnt) as cnt, path
INTO FP
FROM EFP
GROUP BY item, path

END

B. Step 2: Mining pattern-tree Table

For mining FP table it is necessary to build two more
auxiliary tables which are the pattern base (PB) and
conditional FP table (CONFP). We present an approach
where CONFP table is built based on simple SQL with
proper aggregate functions over PB table. On the other
hand, SQL-based FP-Growth [14] demands several
reconstruction processes for those tables. It is almost
unrealistic to create those tables several times. Therefore,
we use an approach for getting sub-paths by means of
UDF functions and database cursors with its respective
support threshold over the SUBFP table (a SUBset of
FP table).
SUBFP is a table that contains only rows from FP

Itemset Mining over Large Transactional Tables on the Relational Databases

9

table which have itemsets enclosed in CONFP. By
doing so, we can reduce the search space for getting
sub-paths directly from all items in FP table, and also,
avoid several reconstruction of PB, FP and CONFP
tables. The size of FP is reduced significantly by using
SUBFP mainly when dealing with low support thresholds
on large datasets. The following steps are required for
mining pattern tree table [4]:
(a) Taking as input the same support threshold defined in
 3.1, creates the related tables PB, CONFP and SUBFP.
(b) Update the column (pos) in CONF which keeps the
 position of each item. This is useful for getting sub-path
 databases in such way that it preserves the order of the
 items on SUBFP table. This is important for using UDF

(table-valued functions).
(c) Extract single patterns by enumerating the prefix-
 item stored on CONFP table.This also creates the
 PATTERNS table.
(d) Extract not-single patterns by applying pattern growth
 over CONFP.
(e) In Fragment Growth step, each prefix-item is

extracted from SUBFP table and verified b y t wo
UDF fu nc t i ons . One for generat i n g t h e sub -
path da t abases (function getTable_pb) and other for
getting the node support associated to each prefix-
item sub-path (function getNodeSupp). Those functions
coupled with the SUBFP table play an important role
for extracting all frequent patterns, and also avoid the
re-construction of PB, FP and CONFP table for each
prefix-item sub- path.

a piece of the Fragment Growth source code #
DECLARE pg_subPath CURSOR for

 SELECT * FROM getTable_pb(@v_prefix,@v_item)
 order by ord

 SELECT list_pg_item = pg_subPath.item
 FOR each row in pg_subPath
BEGIN
SELECT node_path = pg_subPath.item+’%’+

 c_confp.item
SELECT node_supp=

getNodeSupp(pg_subPath.prefix, node_path)
SELECT pat_item = pg_subPath.item
SELECT pat_fp = node_path+'%'+

 pg_subPath.prefix
SELECT pat_cnt = node_supp
SELECT exist_pat = (
SELECT count(*) FROM
 PATERNS
WHERE item=pat_item and fp=pat_fp)
 INSERT INTO PATTERNS (item,fp,cnt)
 VALUES (pat_item, pat_fp, pat_cnt)
 SELECT list_pg_item = list_pg_item

+’%’+ pg_subPath.item
END

UDF FUNCTION getNodeSupp (@item, @path)
RETURNS @node_supp ## -> node support
BEGIN
DECLARE @supp int
SELECT @supp = (SELECT sum(cnt)FROM SUB_FP

WHERE item=@item and
path LIKE '%' +@path+'%')

RETURN (@supp)
UDF FUNCTION getTable_pb (@prefix, @item)
RETURNS TABLE ## -> sub-path databases

AS RETURN
SELECT prefix,item,cnt,ord FROM CONFP
WHERE prefix=@prefix and

item<>@item ##-> criteria for sub-path mining

IV. PGS EVALUATION ON RDBMS
SERVER SIDE

In order to evaluate PGS we compare our results with an
Apriori (K-way join) and improved SQL-based FP-growth
(EFP). Those algorithms were chosen in sense that they
present the basis on the most known itemset mining
implementations based on SQL [1, 12, 13, 14, 15, 16]. Both
algorithms were implemented to the best of our knowledge
based on the published reports on the same machine and
compared in the same running environment. The former
implementation uses a candidate k-table Ck, which is a
slow process for generating all joins and tables. So, when
dealing with long patterns and large datasets the K-way
join seems to be not efficient. The EFP avoids candidate-set
generation been more competitive in low support scenario.
However, it demands several tables reconstruction.
Our approach takes the other way around, beyond pure
SQL to SQL-Extensions. Also getting sub-paths databases,
and restricting the search space for finding frequent
itemsets by means of using an SUBFP table
coupled with UDF functions. Consequently, we don’t
need to materialize PB, FP and CONFP tables several
times. PGS also has been used in [5] for the extraction and
analysis of inter-transactional patterns. The method consists
in the combination of association and sequence mining.

A. Datasets

We use the synthetic transaction data generation described
in [3] for generating transactional tables. The nomenclature
of these data sets is of the form TxxIyyDzzzK. Where xx
denotes the average number of items present per
transaction, yy denotes the average support of each item in
the data set, and zzzK the total number of transactions in K
(1000’s). Table 3 summarizes those datasets.

Datasets Dist.
Items

Nof.
 Rows

Avg.1-it.
sup

Max.1-it.
sup

T5I51K (1) 775 5.112 6 41
T5I5D10K (2) 873 49.257 56 399

T25I10D10K (3) 947 245.933 259 1468
T25I20D100K (4) 981 2.478,55 2526 13.917

Table 3: More information of the transactional datasets

B. Comparative Study

We describe our approach PGS, comparing it with K-Way-
join and EFP. Our experiments were performed with
Microsoft SQL Server 2000 (v.8.0). The machine was a
mobile AMD Athlon ™ 2000+ 645MHZ, 224 MB RAM.
The performance measure was the execution time ‘the
logarithm of the execution time (log (milliseconds))’ of the
algorithm applied over the four datasets with different
support thresholds. We took that log scale in order to get a
better view of the performance comparison among all
approaches, since PGS has good response time. Fig. 3
shows the total time taken by the all approaches.

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347- 5552, Volume-1, Issue-1, September- 2013

10

From those graphs we can make the following
observation: PGS can get competitive performance out of
FP and K-way-join. K-way-join has low performance when
dealing with large datasets. Besides, when the support
decrease the length of frequent itemsets increase causing
expensive joins with the transactional tables. Therefore, the
other two approaches perform better than K-way-join.
The results of PGS and EFP answered our second issue.
The former doesn’t use table reconstruction, getting good
response time. On the other hand, the latter suffers
considerably by working with several table materialization
processes. By those results we have accomplished our main
goals.
The store procedures which deal with the construction of
tables FP and CONFP are the most time-consuming
tasks. They respectively took, for each dataset, 35%,
50%, 75% and 85% of the total execution time.
Nevertheless, the time for the whole process was quite
competitive and those tables are built only once. In order
to speed up even more the whole process, we also have
been applied two clustered indexes on tables CONFP and
SUBFP.

Fig. 3: Time performance of the three
 approaches. PGS runs competitively in sparse
and dense datasets

C. Food Mart Warehouse

FoodMart Warehouse is a sample database provided by
Microsoft SQL Server 2000. One can use Analysis Services
for applying OLAP and Data Mining techniques over data
warehouses. However, only Clustering and Decision Tree
methods are available. In order to support itemset mining
over FoodMart database we may use PGS. It works only
in first step of association rules, which means

generating frequent itemsets. For getting all the rules,
one can program a store procedure using the pseudo-
code in [2]. We choose this last example for presenting
some results with a “real” database. Although we know that
its size is smaller than the largest one showed in section
4.2, we also can reach interesting itemsets. Therefore we
omit the performance comparison among all approaches. It
was used the fact table (sales_fact) as the transactional
table. This table has 164.558 tuples with five dimensions
(product, time, customer, promotion and store). Before
using PGS, we must define which dimensions in the fact
table will be used as the transaction identifier (tid) and the
set of items. Thus, the tid was set to the customer dimension
and items to the product dimension. Furthermore, there are
1.559 distinct products distributed along 7.824 customers.
The most frequent product was 277 “Great English
Muffins” (143) and the less one was 1559 “CDR
Apple Preserves” (43). It was executed several supports
from (0.05%) to (0.01%). The most interesting itemset was
“282%232” means “Best Choice Salsa Dip” and “Great
Wheat Bread” in low level hierarchy. Given that the fact
table was so sparse, the itemsets was selected only with
very low support.

V. CONCLUSION

In this paper, it was purposed a pattern growth mining
implementation which takes advantage of SQL-Extensions.
Most of the commercial RDBMS vendors have
implemented some features for SQL-Extensions.
Integrating data mining in RDBMS is a quite promising
area. Frequent pattern mining is the basic task in data
mining. There are several memory-approaches to mine all
patterns. However, some few efforts have been made on
database perspective, in those cases, only pure-SQL. Given
the large size of database like data warehouse, it is
interesting to take advantage of those databases capabilities
in order to manage and analyze large tables. We work in
this direction purposing an approach with SQL-Extensions.
By doing so, we can achieve competitive results and also
avoid classical bottlenecks: candidate set generation and
test (several expensive joins), and table reconstruction. The
Store Procedures that deals with the construction of the
tables, FP and CONFP, are the most time-consuming tasks,
taking 35%, 50%, 75% and 85% respectively for each
synthetic dataset (1, 2, 3, 4) from the small one to the
large one. Nevertheless, the time for the whole process was
quite competitive. Moreover, it was sed the FoodMart
Warehouse with several supports in order to find interesting
itemsets. One issue that is controversial is code portability,
in sense that PGS is tightly dependent of the database
programming language with SQL-Extensions. On the other
hand for huge databases, it makes more sense take all the
advantages offered by the RDBMS.
As future work, we are working on enhancements for
making the process more interactive, constrained and
incremental. We also intend to improve the whole
performance of PGS by using Table Variables (TV),
which allows mimicking an array, instead of using
database cursors.

Itemset Mining over Large Transactional Tables on the Relational Databases

11

REFERENCES

1. Agarwal, R., Shim., R.: Developing tightly-coupled data mining
application on a relational database system. In Proc.of the 2nd Int.
Conf. on Knowledge Discovery in Database and Data Mining,
Portland, Oregon (1996)

2. Agrawal, R., Imielinski, T., Swami, A..: Mining association rules
between sets of items in large databases. In Proc. of the ACM
SIGMOD Intl. Conference on Management of Data (1993) 207–216

3. Agrawal, R., Srikant., R.: Fast algorithms for mining association
rules. In Proc. of the 20thVery Large Data Base Conference (1994)
487–499

4. Alves, R., Belo, O.: Integrating Pattern Growth Mining on SQL-
Server RDBMS. Technical Report-003, University of Minho,
Department of Informatics, May (2005)
http://alfa.di.uminho.pt/~ronnie/files_files/rt/2005-RT3-Ronnie.pdf

5. Alves, R., Gabriel, P., Azevedo, P., Belo, O.: A Hybrid Method to
Discover Inter- Transactional Rules. In Proceedings of the
JISBD’2005, Granada (2005)

6. Cheung, W., Zaïane, O. R.: Incremental Mining of Frequent
Patterns Without Candidate Generation or Support Constraint,

 Constraint, Seventh International Database Engineering and
Applications Symposium (IDEAS 2003), Hong Kong, China, July
16-18 (2003) 111-116

7. El-Hajj, M., Zaïane, O.R.: Inverted Matrix: Efficient Discovery of
Frequent Items in Large Datasets in the Context of Interactive
Mining, in Proc. 2003 Int'l Conf. on Knowledge Discovery and
Data Mining (ACM SIGKDD), Washington, DC, USA, August 24-
27 (2003) 109-118

8. Han, J., Pei, J., Yin., Y.: Mining frequent patterns without
candidate generation. In Proc. of ACM SIGMOD Intl. Conference
on Management of Data, (2000) 1–12.

9. Hidber, C.: Online association rule mining. In A. Delis,
C. Faloutsos, and S.Ghandeharizadeh, editors, Proceedings
of the 1999 ACM SIGMOD International Conference on
Management of Data, volume 28(2) of SIGMOD Record. ACM
Press (1999) 145–156

10. Orlando, S., Palmerini, P., Perego, R.: Enhancing the apriori
algorithm for frequent set counting. In Y. Kambayashi, W.
Winiwarter, and M. Arikawa, editors, Proceedings of the Third
International Conference on Data Warehousing and Knowledge
Discovery, volume 2114 of Lecture Notes in Computer Science
(2001) 71–82

11. Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Adaptive and
resource-aware mining of frequent sets. In V. Kumar, S. Tsumoto,
P.S. Yu, and N.Zhong, editors, Proceedings of the 2002 IEEE
International Conference on Data Mining. IEEE Computer Society
(2002)

12. Rantzau, R.: Processing frequent itemset discovery queries by
division and set containment join operators. In DMKD03: 8th
ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery (2003)

13. Sarawagi, S., Thomas, S., Agrawal, R.: Integrating mining with
relational database systems: alternatives and implications. In Proc.
of the ACM SIGMOD Conference on Management of data, Seattle,
Washington, USA (1998)

14. Shang, X., Sattler, K., Geist, I.: Sql based frequent pattern
mining without candidate generation. In SAC’04 Data Mining,
Nicosia, Cyprus (2004)

15. Wang, H., Zaniolo, C.: Using SQL to build new aggregates and
extenders for Object- Relational systems. In Proc. Of the 26th Int.
Conf. on Very Large Databases, Cairo, Egypt (2000)

16. Yoshizawa, T., Pramudiono, I., Kitsuregawa, M.: Sql based
association rule mining using commercial rdbms (ibm db2 udb eee).
In In Proc. DaWaK, London, UK (2000)

